The Perfect Number Theorem and Wilson's Theorem
نویسندگان
چکیده
منابع مشابه
The Perfect Number Theorem and Wilson's Theorem
This article formalizes proofs of some elementary theorems of number theory (see [1, 26]): Wilson’s theorem (that n is prime iff n > 1 and (n − 1)! ∼= −1 (mod n)), that all primes (1 mod 4) equal the sum of two squares, and two basic theorems of Euclid and Euler about perfect numbers. The article also formally defines Euler’s sum of divisors function φ, proves that φ is multiplicative and that ...
متن کاملThe Strong Perfect Graph Theorem
A graph G is perfect if for every induced subgraph H, the chromatic number of H equals the size of the largest complete subgraph of H, and G is Berge if no induced subgraph of G is an odd cycle of length at least 5 or the complement of one. The “strong perfect graph conjecture” (Berge, 1961) asserts that a graph is perfect if and only if it is Berge. A stronger conjecture was made recently by C...
متن کاملStrong Perfect Graph Theorem
In 1960 Berge came up with the concept of perfect graphs, and in doing so, conjectured some characteristics about them. A perfect graph is a graph in which the chromatic number of every induced subgraph equals the size of the largest clique of that subgraph [2]. Two conjectures are now known as the Perfect Graph Theorem and the Strong Perfect Graph Theorem. Both of these theorems make deteminin...
متن کاملThe Prime Number Theorem
The Prime Number Theorem asserts that the number of primes less than or equal to x is approximately equal to x log x for large values of x (here and for the rest of these notes, log denotes the natural logarithm). This quantitative statement about the distribution of primes which was conjectured by several mathematicians (including Gauss) early in the nineteenth century, and was finally proved ...
متن کاملFormalization of the prime number theorem and Dirichlet's theorem
We present the formalization of Dirichlet’s theorem on the infinitude of primes in arithmetic progressions, and Selberg’s elementary proof of the prime number theorem, which asserts that the number π(x) of primes less than x is asymptotic to x/ log x, within the proof system Metamath.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Formalized Mathematics
سال: 2009
ISSN: 1898-9934,1426-2630
DOI: 10.2478/v10037-009-0013-y